posted by 구름너머 2006. 2. 1. 09:36
손석희 아나운서, 입사에서 사표제출까지
[마이데일리 2006-01-31 10:20]

[마이데일리 = 배국남 대중문화전문기자] 손석희 아나운서가 22년간의 MBC 아나운서 생활을 정리하며 최근 사표를 제출했다. 1984년 입사해 최근 사표를 낸 손아나운서의 22년은 어떤 모습이었을까.

손석희를 말하면 떠오르는 그림이 두 개있다. “누가 이 연민의 정을 불러 일으킬만한 선한 인상의 미남 청년을 투사로 만들었는가. 타락한 세상에서 숨죽이고 조용히 혹은 적당히 살았더라면 세속의 인기와 일상의 안일함 속에 두다리 뻗고 살 수 있었을 텐데....” (1992년 10월 7일 MBC노조의 파업투쟁속보) 이것은 당시 노조의 쟁의대책위원으로 구속돼 푸른 수의를 입은 손석희의 모습이다.

또 하나의 그림은 택시안 풍경이다. “저런 나쁜 놈들이 있나. 농민들이 얼마나 가슴 아프겠어.” MBC 라디오 ‘시선집중 손석희입니다’ 에서 미군탱크에 의해 말리던 벼를 망쳐 일년농사 헛 지었다는 경기 포천 농민들의 분노를 방송하자 택시 기사와 승객들은 일제히 미군 행위에 개탄하며 “역시 손석희는 믿을 만 해”라는 탄성을 지르는 모습이다.

정치적 무뇌아로 입사한 뒤 무임승차로 노조에 참여해 얼굴 팔렸다는 그의 고백에도 불구하고 손석희 하면 이제는 조건반사 식으로 나름의 가치관을 갖고 프로그램을 진행하는 사람이라는 인식을 지울 수 없다. 그러한 치열함이 시청자나 청취자에게 좋은 반응을 주고 있다. 시사, 토론 프로그램 MC로서는 자신의 정체성을 확연히 드러낸 것은 폭넓은 사랑을 받는데는 한계가 있지만 손석희는 전문적 영역에서 독보성을 인정받고 있다.

그는 정체성뿐만 아니라 놀라운 순발력과 위기대처 능력을 갖고 있다. 방송가 사람들은 손석희는 진정한 프로라고 인식한다. 그는 0.5초안에 직관적 판단을 내리고 시청자들이 필요로 하는 정보를 사람들로부터 이끌어낸다. 이러한 것은 순전히 경험과 노력의 소산물이다. “뉴스를 진행할 때 성수대교 무너지고 대구지하철 폭파사건 터진 것을 비롯, 삼풍백화점 붕괴사건, 유람선 화재사건, 전직대통령 구속 등 대형사건이 줄줄이 터져 위기의 순간을 대처하는 노하우를 몸으로 익혔다”고 말한다. 그는 이러한 대형사건을 보도하면서 특유의 군더더기 없는 멘트와 차분한 진행으로 찬사를 받았다.

2000년 1월 1일 새로운 밀레니엄 기념 특집방송에서 MBC에서는 손석희와 탤런트 심혜진을 메인 MC로 내보냈다. 워낙 날씨가 춥고 강풍이 부는 데다 방송을 하는 서울 광화문에 수많은 인파가 몰려들었다. 대본이 바람에 날려 나간 상황에서 심혜진은 “어. 어”소리만 반복하고 있을 때 손석희는 기념 행사의 모든 상황을 일목요연하게 정리하고 밀레니엄의 의미까지 부여해 ‘위기대처의 남자’라는 별명을 얻기까지 했다.

이러한 능력은 언론매체 비평 프로그램인 ‘미디어 비평’에서 유감없이 나타났다. 동종 업체인 언론을 비판하는 프로그램에서 그는 어느 쪽도 치우치지 않는 평상심으로 냉철하게 프로그램을 이끌었다. 또한 유시민의 뒤를 이어 2002년 1월부터 진행을 하고 있는 ‘100분 토론’에서도 그의 진가를 발휘하고 있다. 토론 프로그램은 있으나 토론은 없고 싸움만 난무하는 풍토에서 그는 사거리의 교통혼잡을 수신호 하나로 풀어내듯 그의 말로 싸움을 정리해 토론으로 정리해 나가고 있다. 하지만 토론자의 역량부족까지는 해결하지 못하고 있다.

그에 대한 일부의 선입견에도 불구하고 손석희는 “시사, 토론 프로그램을 공론의 장으로 이끌고 싶다. 상업주의와 정치적인 것으로부터 거리를 두고 많은 사람들이 진정으로 알고 싶은 것, 말하고 싶은 것들에 대한 통로를 마련하고자 노력한다”고 했다.

그는 ‘반 발짝 MC론’을 주장하고 있다. 프로그램을 진행할 때 출연자들이 편하게 말할 수 있도록 ‘반 발짝’ 물러서고 멘트를 할 때는 ‘반 발짝’ 앞선다. 이는 진행자가 앞서서 출연자의 대답을 유도하거나 답변 중에 끼여들면 하고 싶은 말을 못하기 때문에 출연자가 말할 때는 최대한 말을 아끼고 진행 멘트를 할 때에는 시청자들의 견해보다 조금 진보된 의견을 개진해 여론을 환기시키려 하는 것이다.

그는 “일부 방송사 사람들이나 시청자, 청취자들이 제가 노조활동을 열심히 했다고 프로그램을 편견에 치우쳐 진행할 지 모른다는 우려를 갖고 있는데 걱정 안 하면 좋겠다. 전파는 국민의 것이다”고 당부 아닌 당부를 한다.

손석희의 이런 자세와 진행능력은 인정을 받고 있다. 2001년 MBC가 여론조사기관 갤럽에 의뢰해 10~70대 4,000명을 대상으로 조사한 방송인에 대한 인식조사에서 그는 최고의 아나운서로 선정됐으며 월간 ‘참여사회’가 2001년 12월 시민운동가 100명을 대상으로 실시한 희망을 주는 언론인 조사에서 한겨레 손석춘 논설위원 뒤를 이어 2위에 선정됐으며 시사저널이 2005년 실시한 언론인 영향력 조사에서 1위에 올랐다.

이러한 여론 조사의 한결같은 결과는 손석희의 MC로서의 능력과 가치관을 평가한 것이다. 손석희는 교수로 자리를 옮기더라도 전파의 주인인 시청자와 함께 하는 방송인으로 영원히 남고 싶다고 했다.

[시선집중을 진행하고 있는 손석희 아나운서. 사진제공=MBC]

(배국남 대중문화전문기자 knbae@mydaily.co.kr)

- NO1.뉴미디어 실시간뉴스 마이데일리(www.mydaily.co.kr) 저작권자 ⓒ 마이데일리.
posted by 구름너머 2006. 1. 25. 17:53
고래가 토해낸 '용연향' 주워 7억원 횡재

호주에서는 해변에서 희귀한 고래 토사물을 주은 일가족이 일거에 무려 100만 호주 달러(한화 7억3천300만원 정도)가 넘는 돈을 거머쥐는 행운을 안게 됐다고 호주 언론들이 25일 전했다.

호주 언론들은 사우스 오스트레일리아주 서해안 스트리키 베이 부근 해변에서 일가족이 해변을 걷다 밀랍처럼 생긴 물체 덩어리를 발견하고 무슨 물건인지 궁금해 주워다 조사를 의뢰했다가 고급 향수 원료로 사용되는 용연향으로 드러남에 따라 횡재를 하게 됐다고 밝혔다.

향유고래가 먹이를 장에서 소화시키다 입으로 게워낸 토사물인 용연향은 희귀한 향수 연료로 1g당 27달러에서 87달러까지 호가하는 데 이 용연향 덩어리는 14.75kg로 100만 호주달러가 넘을 것으로 추산되고 있다.

이 가족과 접촉했던 해양 생태 전문가인 켄 주어리는 용연향은 고래가 트림을 하면서 입으로 토해낸 배설물로 고약한 냄새가 난다고 말하고 그런 물건을 발견하는 것 자체가 매우 드문 일이라고 말했다.

그는 “고래가 장에서 소화시키던 것을 토해낼 때는 완전히 소화시키지 못한 오만가지 것들이 모두 나오게 된다”며 “이 토사물은 사실상 물보다 가볍기 때문에 바다 위를 여기저기 떠돌아다니게 된다”고 설명했다.

그는 “고래가 토해낸 직후에 그것을 발견하게 되면 냄새가 고약하기 때문에 누구나 뭣 모르고 버리게 될 것”이라고 말하고 “그러나 10여년 이상 바다 위를 떠돌아다니다 보면 바닷물의 염분과 햇빛에 의해 이 배설물이 깨끗하게 씻겨지면서 마르게 된다”고 말했다.

그는 “10년이 지난 뒤 깨끗하게 됐을 때도 그것이 갖고 있는 효능에는 아무런 변화가 없다”고 말하고 “문헌에 보면 기원전 1천년 경에도 이집트와 중국에서 고래 토사물을 향수로 사용했을 뿐 아니라 먹기도 한 것으로 나타나고 있다”면서 사실상 금보다 더 비싼 것이라고 말했다.

용연향은 향수의 원료로서 뿐 아니라 의료용으로, 또는 최음제로도 사용돼 오고 있으며 일부 지역에서는 음식이나 와인의 향미를 돋우는 데도 사용하고 있는 것으로 알려지고 있다.

오클랜드<뉴질랜드>=연합뉴스
입력 : 2006.01.25 08:11 37'
posted by 구름너머 2006. 1. 23. 17:13
우주쓰레기 쏟아질라
인공위성·로켓잔해 9400여개
최소 20년마다 큰 충돌 예측

수명을 다한 인공위성·우주선·로켓의 잔해가 지구 궤도에 계속 쌓이면서 오염 문제를 넘어 안전상 심각한 위협이 되고 있다고 AP 등 외신들이 보도했다.

1957년 구(舊)소련의 첫 인공위성 스푸트니크호 발사로 시작된 세계 각국의 우주개발 각축전으로 현재 지구 주변 우주엔 크기 10㎝ 이상인 우주비행체 잔해가 9400여개, 5500t이나 된다고 미 항공우주국(NASA) 과학자들이 과학전문 주간지 사이언스 최신호에 밝혔다.


쓰레기 대부분은 인공위성의 폭발 등으로 생겼고, 고도 880~1000㎞에 집중돼 있다. 내용물은 발사 후 분리된 로켓 부속품(17%), 퇴역 인공위성(31%), 나사못과 부품(13%), 충돌로 생긴 부스러기(38%) 등이다.

이 우주쓰레기는 열심히 치우려 해도, 잔해들끼리 충돌하면서 계속 파편이 늘어난다. 또 총알보다 10배 정도 빠른 초속 10~20㎞의 속도로 날아다녀, 임무 수행 중인 우주비행체들에 ‘가공할 흉기’로 변했다. 이 추세대로라면 2055년쯤엔 쓰레기양이 급증해, 잔해들 간 충돌도 훨씬 빈번해진다.

가장 낙관적인 NASA의 시뮬레이션 결과도 최소 20년마다 큰 충돌을 예측했고, 최악의 경우를 가정한 중국의 연구는 ‘2300년 이후엔 모든 인공위성과 유인 우주선이 잔해들과의 충돌 위험에 처할 수 있다’고 내다봤다.

문제는 해결책이 마땅치 않다는 것. 궤도를 도는 잔해들에 감속(減速)용 끈을 달거나 레이저를 쏴서 지구로 떨어지게 하는 방법 등도 있지만, 기술·경제적으로 효율이 낮다.

이용수기자 hejsue@chosun.com
입력 : 2006.01.22 22:07 54' / 수정 : 2006.01.23 07:03 14'
posted by 구름너머 2006. 1. 20. 09:38

명왕성 탐사선 뉴 호라이즌스 발사

▲ 인류 최초의 무인 명왕성 탐사선 '뉴 호라이즌스(New Horizons)'가 20일 미 플로리다주 커내배럴의 발사기지에서 애틀러스 V 로켓에 실려 발사되고 있다. /AP 연합

태양계 끝 ‘막내 별’을 찾아서…

명왕성 탐사선 발사 2015년 7월쯤 도달

태양계의 최소 행성이자 최대 미스터리인 명왕성의 비밀에 인류가 도전한다. 미국 항공우주국(NASA)은 18일 오전 3시24분(한국 시각) 이 별을 탐사할 ‘뉴 호라이즌’호(號)를 발사한다고 밝혔다.

7억달러(약 7000억원)가 들어간 피아노 크기의 뉴 호라이즌은 미 플로리다주 케이프 커내버럴 기지에서 로켓 아틀라스5에 실려 발사된다. NASA 사상 가장 야심찬 이 계획은 장장 15년에 걸쳐 우주 공간 약 48억㎞ 이상을 항해하는 것을 목표로 한다. 계획대로라면 명왕성에는 가장 빠른 지름길을 달려 2015년 7월쯤 접근한다

명왕성은 75년 전 처음 발견된 후로도 ‘신비의 별’이다. 그 주변 위성이 1978년 발견된 카론 말고도 두 개 더 있다는 사실조차 작년에야 알게 됐을 정도. 이 별은 지구에서 너무 멀어 우주선을 보내기 어려운 데다 크기도 달의 3분의 2밖에 안 돼 관측에 한계가 있었던 탓이다. 이 때문에 많은 학자들은 지금도 이 별이 행성이 아니라 카이퍼대(帶)의 큰 덩어리란 주장을 편다. 카이퍼대란 태양계를 둘러싼 폭 1440억 km의 얼음·운석층을 말한다.

따라서 이번 탐사의 주임무는 명왕성의 성분 분석과 그 위성들에 관한 정보 수집이다. 여력이 되면 카이퍼대의 비밀까지 캘 계획이다. 하지만 첩첩난관이다. 목적을 달성하자면 최고 시속 5만㎞로 항해해야 하고 명왕성에 접근해서도 고도 약 9700㎞ 지점을 지나야 한다. 또 명왕성은 중력이 지구의 6%에 불과할 정도로 약해 우주선이 궤도에 머무를 수도 없어 뉴 호라이즌은 목적지를 지날 때 7개 장치를 재빨리 가동시켜 자료를 모아야 한다.

전병근기자 bkjeon@chosun.com
입력 : 2006.01.18 01:32 28'
posted by 구름너머 2006. 1. 16. 08:28
<새 지폐속 꼭꼭 숨은 미세문자를 찾아라>
[연합뉴스 2006-01-16 06:56]
(서울=연합뉴스) 박상현 기자= 올해 초 발행된 새 5천원권 지폐의 위.변조 방지 요소 가운데 하나인 미세문자가 기존 지폐와 비교해 크기가 더 작아지고 배치 방식도 다양해져 화제가 되고 있다.

한국은행은 새 5천원권 안내 팸플릿에 미세문자가 새겨진 위치를 부분적으로 공개하고 있으나 육안으로는 도저히 확인할 수가 없고 돋보기로 지폐 앞뒷면을 한참을 탐색해야 겨우 찾을 수 있다.

특히 일부 미세문자의 위치는 한은의 안내 팸플릿에도 나와 있지 않아 한은 발권국 실무자 조차도 정확한 위치를 잘 모르는 등 마치 `숨은 그림 찾기'를 해야 할 정도로 꼭꼭 숨어 있다.

새 5천원권에 적용된 미세문자는 크게 나눠 앞면에 ▲율곡 이이 초상의 옷깃부분 ▲초상 오른쪽 지문 ▲오죽헌 건물 기단 아래 장식문양, 그리고 뒷면에는 ▲초충도 풀잎 ▲바탕의 조각보 등에 배치돼 있다.

미세문자는 `5000 WON', `BANK OF KOREA' 등이 반복적으로 새겨져 있다.

지금의 1만원권 지폐에도 앞면 도안에 물시계 하단부위에 `한국은행'이라는 미세문자가 반복적으로 새겨져 있으나 조금만 자세히 들여다보면 육안으로 판독이 가능하다.

그러나 새 5천원권은 미세문자의 크기를 35마이크로미터(㎛)로 줄여 육안으로는 확인이 거의 불가능하며 위치도 1만원권 처럼 단 한곳이 아니라 앞뒷면 군데군데에 산재해 있다.

한은 관계자는 "현재의 지폐 제조 기술로는 인쇄 가능한 최소 문자의 한계가 35㎛수준이며 크기를 더 줄일 경우 잉크의 뭉쳐짐 현상이 발생할 수 있다"고 설명했다.

특히 일부 미세문자는 컴퓨터로 그린 것이 아니라 전문기술자가 직접 손으로 제작, 위.변조를 더욱 어렵게 했다.

한은은 "컴퓨터로 미세문자를 그려낸다면 모든 문자가 크기와 간격이 일정하게 나오지만 손으로 직접 새길 경우 각 문자가 불균일하게 그려지기 때문에 모방이 거의 불가능하다고"고 설명했다.

이처럼 지폐인쇄용 원판의 미세문자를 손으로 직접 새겨낼 수 있는 기술을 보유한 전문가는 전세계에서 단 몇명만 존재한다고 한은은 설명했다.

이러한 전문가가 새 5천원권에 새겨넣은 미세문자 가운데 단연 압권은 율곡 이이 초상의 옷깃부문의 미세문자다.

육안으로 보면 옷깃선에 불과하지만 돋보기로 자세히 들여다보면 `BANK OF KOREA'라는 문자가 비스듬하게 3번 반복돼 새겨져 있다.

또 뒷면 초충도 그림에서는 수박의 잎과 넝쿨에 미세문자가 군데군데 숨어 있으나 주변무늬와 구별하기 곤란할 정도로 워낙 크기가 작아 돋보기를 이용하더라도 정확한 위치를 파악하는데 한참이 걸린다.

이와 함께 뒷면 바탕무늬인 조각보는 약간씩 색상을 달리하며 일정한 무늬를 형성하고 있는데, 일부 조각보의 무늬는 바로 미세문자에 의해서 색상이 형성되고 있다.

이 조각보에 숨은 미세문자 역시 한 군데가 아니라 여러 군데 흩어져 있어 정확히 몇 군데에 미세문자가 숨어 있는지 파악하는데 한참의 수고를 들여야 한다.

한은은 "컴퓨터 스캔너와 컬러프린터, 컬러복사기 등을 이용해 위폐를 만들고자 할 경우 미세문자가 사라지기 때문에 쉽게 위.변조 여부를 금방 확인할 수 있다"고 설명했다.

내년 초 새로 발행되는 1천원.1만원권에도 이러한 미세문자가 다양하고 더욱 복잡한 형태로 배치될 예정이다.

shpark@yna.co.kr

(끝)

posted by 구름너머 2006. 1. 14. 17:48
posted by 구름너머 2006. 1. 11. 19:15
출처1 : 처음 느낌 영원히...
수학의 발전·보급을 목표로 활동하고 있는 클레이 수학재단(CMI)은 24일 개당 100만 달러의 현상금을 내걸고 수학문제 7개를 출제했다.

미국 케임브리지에 본부를 둔 CMI는 이날 파리에서 열린 '수학적 사고의 보편성'에 대한 밀레니엄 행사에서 현상금 수학문제를 공개하는 한편 인터넷(http://www.claymath.org/Millennium_Prize_Problems/)에도 실었다.

'P 對 NP', '리만 가설', '내비어-스토크 존재와 매끈함','양-밀즈 존재와 매스갭' ,'Hodge Conjecture','Birchand Swinnerton-Dyer Conjecture'
등 일반인들은 한 번도 들어보지도 못한 문제들로 의문을 제기한 수학자들의 이름을 딴 것이 대부분이다.

지난 95년 350년만에 '페르마의 정리'를 해결한 프린스턴대학의 앤드류 와일즈교수는 "7개 문제는 20세기에 해결하지 못한 대표적인 수수께끼들로 현상금을 건 만큼 차세대의 관심을 유발할 수 있을 것"이라고 말했다.

와일즈 교수는 기자회견에서 자신은 10세 때 만화책에서 페르마의 정리를 처음 보고 의심을 품기 시작해 결국 해결했다면서 우선 관심을 유발하는 것이 중요하다고 지적했다.

엄청난 현상금에도 불구하고 전문가들은 가까운 장래에 정답이 나올 것 같지는 않다고 보고 있다.

CMI의 아서 제퍼 이사장(하버드대 수학교수)은 "시한은 없다"면서 빠르면 4년 이내에 정답이 하나 정도 나올 수 있을 것으로 기대한다고 말했다.

이번에 공개한 문제들은 한결같이 이미 내로라 하는 수학자들도 두 손을 든 것들로 정답이 나올 때까지는 수년 혹은 수십년이 걸릴 것으로 추정되고 있다.

문제 정답을 찾은 사람은 세계적 권위를 인정받은 학회지에 먼저 발표해야 하며 그후 2년을 기다린 후에야 CMI의 심사를 받는다.

새세기의 첫 해에 어려운 수학문제를 공개 출제한 것은 이번이 처음이 아니다.

지난 1900년에는 독일 수학자 다비드 힐버트는 파리에서 열린 제2차 수학자 국제대회에 23개의 수학문제를 내놓았다.

100년 사이에 23개 문제(http://babbage.clarku.edu/~djoyce/hilbert/) 가운데 20개의 정답이 나왔는데 그 해답은 의학, 기술, 안전 등의 첨단분야에서 새 지평을 여는데 크게 기여했다는 것이 전문가들의 한결같은 평가이다.

미해결 문제 가운데는 이번에 나온 '리만 가설'도 포함되어 있는데 이 문제를 풀면 컴퓨터 통신의 비밀유지에 크게 기여할 것으로 기대되고 있다.

'내비어-스토크' 문제의 정답은 비행기, 선박에 응용될 수 있을 것으로 보인다.

일부 수학자들은 이번 수학문제는 이미 전문가들이 머리를 싸매고 연구했던 것들로 현상금을 거머쥐는 사람은 거의 없을 것으로 보고 있다.

미 캘리포니아주 모라가에 있는 성모대학의 케이스 데브린 과학대학장은 이번 문제를 '수학의 에베레스트산'으로 비유하면서 정답을 못찾는다 하더라도 연구과정에서 부산물이 상당할 것이라고 말했다.

데브린 학장은 "에베레스트산 정상을 정복하는 사람은 수 명에 불과하지만 높은 산을 정복하는 데 필요한 첨단장비가 여러 사람에게 유익함을 주는 것처럼 이번 수학문제도 해결과정에서 많은 사람에게 도움을 줄 것"이라고 기대했다.

CMI는 보스턴의 재력가 랜던 클레이가 수학이야말로 최고의 학문이라며 수학의 발전과 보급을 목표로 세운 민간재단이다

김양곤 전북대 교수(55ㆍ수학 통계정보과학부) 팀은 24일 "미국 클래이 수학재단(CMI)이 2000년 상금 700만달러를 걸고 발표했던 이학계 세계 7가지 난제 중 1번 문제를 풀었다"고 밝혔다.

김 교수는 남기봉 미국 위스콘신대학 교수와 함께 1번 문제인 'P 대 NP '를 공동으로 해결해 2004년 3월에 발표하는 인도 SCI약급 논문집 'JAA DS'에 게재할 예정이다.

김 교수 논문은 게재 후 2년 동안 수학계 반응을 본 뒤 CMI 심사를 거 쳐 100만달러를 수상하게 된다.

출처2 : http://blog.naver.com/psy2/110000825004

2000년 5월 클레이 수학 연구소(CMI)는 파리에서 공개적으로 열린 회견을 통하여 일곱 개의 미해결 수학 문제를 제시하고 각각에 100만 달러의 현상금을 내걸었다.
그 문제들은 여러 나라의 수학자들로 이루어진 선정 위원회가 오늘날 수학에서 가장 중요하고 여려운 문제라고 선정한 것들이다. 현상 공모 발표는 꽤 큰 반향을 불러일으켰고, 여러 주 동안 언론의 관심을 받았다.

총 700만 달러 - 문제당 100만 달러이며 공모기간은 무제한이다 - 의 상금은 미국인 부호 랜던 클레이에게서 나왔다. 1년 전 그는 비영리 단체인 클레이 수학 연구소(CMI)를 그의 고향인 메사추세스 주 케임브리지에 설립했다. 설립목적은 수학 연구를 장려하고 지원하는 것이다. CMI는 파리에서 열린 발표회를 주관했으며, 밀레니엄 현상 공모의 행정업무를 맡을 것이다.

일곱 개의 문제는 CMI 과학 자문회가 선발한 국제적으로 유명한 수학자들로 구성되고 CMI의 재정 지원 책임자인 자페가 지휘하는 소규모 선정 위원회에 의해서 수 개월에 걸쳐 선정되었다. 미국 수학회 회장을 역임한 바 있는 자페는 현재 하버드 대학 클레이 수학 교수직을 맡고 있다. 선정 위원회는 선택된 일곱 개의 문제가 오늘날 수학에서 가장 중요한 미해결 문제라는 것에 합의했다. 대부분의 수학자들도 동의할 것이다. 그 문제들은 수학 주요 분야의 핵심에 있고, 전 세계 최고 수학자들의 노력을 무색하게 한 문제들이다.

문제 선정에 참여한 전문가들 중에 앤드루 외일스 경이 있다. 그는 6개월 전 페르마의 마지막 정리를 증명한 장본인이다. 만일 그가 없었다면 330년이다 된 페르마의 마지막 정리 증명 문제 또한 밀레니엄 문제에 포함되었을 것이다. 와일스와 함께 선정에 참여한 전문가로는 자페 외에 아티야와 테이트 - 이들이 파레에서 문제를 발표했다 - 프랑스의 알랭 콘느, 미국의 에드워드 위튼이 있다.

이상하게 여겨질지도 모르지만 클레이는 수학자가 아니다. 그는 하버드 대학원에서 영어를 전공했다. 하지만 그는 모교의 수학 교수직 재정을 지원하며, 클레이 수학 연구소를 지원하고(그가 현재까지 클레이 연구소에 기부한 금액은 9000만 달러이다), 이제는 밀레니엄 현상 공모까지 지원한다. 그가 이렇게 발벗고 나서는 이유는, 중요한 분야에 주어지는 공공 재정이 너무 낮다고 여기기 때문이라고 그난 말한다. 대규모 현상 공모를 주최하고 이를 알리는 발표회에 세계 언론을 끌어들임으로써, 클레이는 밀레니엄 문제들 - 또한 수학 일반 - 이 국제적인 대중매체의 주목을 받도록 만들었다. 그런데 왜 파리에서 발표회를 연 것일까?

역사가 있다. 정확히 100년 전인 1900년 파리에서 비슷한 사건이 있었다. 당시 파리에서는 제 2차 국제 수학자 회의가 열렸다. 8월 8일 당시 수학계를 이끌던 독일 수학자 힐베리트는 초청 강연에서 20세기 수학을 위한 안건들을 제시했다. 강연에서 그는 그가 생각하기에 가장 중요한 미해결 문제 스물세 개를 나열했다. 소위 "힐베르트 문제들"이라고 불리게 된 그 문제들은 수학자들을 미래로 이끄는 횃불이였다.

힐베르트가 제시한 문제들 중 소수는 그가 예상했던 것보다 휠씬 쉬웠고 곧바로 해결되었다. 또 일부 문제들은 정확한 대답이 불가능할 만큼 불명료했다. 그러나 대부분위 문제들은 매우 난해한 수학 문제라는 것이 밝혀졌다. 이 "참된" 힐베르트 문제들 중 하나를 분 사람은 수학자 사회에서 노벨상에 결코 뒤지지 않는 명성을 얻었다. 문제를 푼 수학자들은 노벨상 수상자처럼 성취의 보상을 얻기 위해서 여러 해를 기다릴 필요가 없었다. 해답이 옳다는 것에 수학자 사회가 동의하는 순간 영광과 포상이 주어졌다.

2000년까지참된 힐베르트 문제들은 하나만 제외하고 모두 해결되었다. 수학자들에게 새로운 과제를 부여할 때가 온 것이다. 두번째 밀레니엄을 마감하는 시점에서 최대의 문제들은 무엇일까? 모든 사람들이 수학계의 에베레스트 산이라고 인정한 미해결 문제들은 어떤 것들일까?

파리 발표회는 역사를 재현하려는 노력이기도 하지만, 전적으로 그런 것은 아니다. 와일스가 지적했듯이, 밀레니엄 문제를 발표하는 CMI의 목표는 힐베르트의 목표와 약간 다르다. "힐베르트는 그의 문제들을 통해서 수학에 지침을 주려고 했다"라고 와일스는 말한다. "우리는 중요한 미해결 문제들을 지적하려고 할 뿐이다. 수학의 기획 전반을 대변할 문제를 골라내기는 어렵다." 다시 말해서, 밀레니엄 문제들은 수학이 지금 어디로 가고 있는지를 말해 주기에는 부족할 수도 있다. 그러나 그 문제들은 현재 수학의 최전방이 어디에 있는지를 보여주는 훌륭한 정지화면이다.




그렇다면 밀레니엄 문제들은 어떤 것들일까? 오늘날의 수학은 상당한 배경지식 없이는 의미있게 전달하기가 불가능한 지경에 이르렀다. 따라서 일단 문제들의 명칭을 말하고 그 문제들이 무엇과 관련되는지를 간략하게 이야기하겠다.




*1. P vs NP Problem (P 대 NP 문제)

; 이 문제는 밀레니엄 문제들 중에서 유일하게 컴퓨터와 관련된 문제이다. 많은 사람들은 이를 의아하게 여길 것이다. "요새는 수학 연구를 대부분 컴퓨터로 하잖아?"라고 반문할 것이다. 정말 그렇까? 아니다. 실상은 그렇지 않다. 물론 맞는 말이기도 하다. 대부분의 수치 계산은 컴퓨터에 의해서 수행된다. 그러나 수치 계산은 수학의 작은 부분에 불과하며 핵심적인 부분이 아니다.
전자 컴퓨터는 수학에서 나왔지만 - 컴퓨터를 위해서 위해서 필요한 수학의 마지막 단계는 최초의 컴퓨터가 제작되기 수년 전인 1930년대에 완성되었다 - 지금까지 컴퓨터 세계에서 발생한 중요한 - 세상에서 가장 중요하다고 인정할만한 - 수학적 문제는 단 두 개에 불과하다. 그 두 문제는 계산기계라기보다는 개념적 처리과정으로 이해된 컴퓨터와 관련된다. 물론 이런 이해가 실제 계산에 대해서 중요한 함축을 가질 가능성은 열려 있다. 두 문제 중 하나는 헬베르트의 1900년 문제 목록에 들어있다. 그 문제 - 특성한 방정식들은 컴퓨터로 풀 수 없음을 증명하라는 문제 - 는 1970년에 해결되었다.

다른 한 문제는 더 최근에 제기되었다. 그 문제는 컴퓨터가 얼마나 계산과제들을 효율적으로 해결할 수 있는지와 관련된다. 컴퓨터 과학자들은 계산과제들을 두 개의 주요 범위로 분류한다. P형 과제는 컴퓨터를 통해서 효율적으로 해결할 수 있다. E형 과제는 컴퓨터로 완수할려면 100만년 이상이 걸릴 수도 있다. 안타깝게도 공업이나 상업에서 발생하는 주요 계산과제들은 대부분 세번째 문제인 NP형에 속한다.NP형은 P형과 E형의 중간인 것처럼 보인다. 정말 그럴까? NP형 과제가 실은 변형된 P형 과제인 것은 아닐까? 대부분의 전문가들은 NP와 P가 다르다고 믿는다.(즉, NP형 계산과제는 P형 계산과제와 다르다고 믿는거죠). 그러나 30년에 걸친 노력에도 불구하고 NP가 P와 같은지 여부는 증명되지 않았다. 이 문제의 해결은 공업, 상업, 그리고 인터넷을 비롯한 전자통신에 커다란 영향을 끼칠 것이다.




*2. Poincare Conjecture (푸앵카레 추측)

; 거의 한 세기 전 프랑스 수학자 푸앵카레가 처음 제시한 이 문제는 다음과 같은 간단해 보이는 질문에서 시작된다 : 사과와 도넛을 어떻게 구별할 수 있을까? 정말이지 이 질문은 100만 달러의 상금과는 거리가 먼 질문으로 보인다. 하지만 이 질문은 어렵다. 왜냐하면 푸앵카레가 보다 일반적인 경우들에 적용될 수 있는 수학적 해답을 요구했기 때문이다. 그 요구 때문에, 한 입 먹어보면 알지 않느냐는 자명한 해답들은 제거된다. 푸앵카레 자신이 제시한 해답을 알아보자. 만일 당신이 사과 표면에 고무 밴드를 늘여놓았다면, 당신은 그 밴드를 천천히 움직여서 한 점이 되도록 축소시킬 수 있다. 고무 밴드를 자를 필요도 없고, 표면을 떠날 필요도 없다. 반면에 도넛 둘레를 한 바퀴 감도록 고무 밴드를 늘여놓았다고 해보자. 이 경우에는 고무 밴드나 도넛을 자르지 않는 한, 고무 밴드를 한 점으로 축소시킬 방법이 없다. 축소되는 밴드를 이용한 이 구분법을 사과와 도넛의 5차원 변양태에서도 적용할 수 있을까? 푸앵카레가 묻는 질문이 바로 이것이다. 놀랍게도 아직 아무도 이 질문에 답하지 못했다. 푸앵카레 추측에 따르면, 고무 밴드 발상을 이용해서 4차원 사과를 식별할 수 있다.

이 문제는 현대 수학에서 가장 흥미로은 분야들 중 하나인 위상학의 핵심에 놓여 있다. 위상학은 그 자체로 흥미롭고 때로는 기발한 발상으로 수학적 이성인들을 사로잡을 뿐만 아니라 - 예를 들면 위상학은 도넛과 커피 잔이 심층적이고 그본적인 관점에서는 동일하다고 말한다 - 수학의 여러 분야들과 관계된다. 위상학의 발전은 컴퓨터 칩을 비롯한 전자부품의 설계와 생산, 운송, 뇌 연구, 심지어 영화산업에도 영향을 끼친다.


*3. Navier-Stokes Equation(내비어-스톡스 방정식)

;내비어-스톡스 방정식들은 배의 몸통 주위를 흐르는 물이나 비행기 날개 위로 흐르는 공기 같은 유체와 기체의 흐름을 기술한다. 그 방정식들은 수학자들이 말하는 이른바 편미분방정식이다. 과학이나 공학을 전공하는 대학생들은 의례적으로 편미분 방정식의 해법을 배운다. 내비어-스톡스 방정식들은 외관상 대학 미적분학 교과서에나오는 편미분방정식 연습 문제와 다르지 않아 보인다. 그러나 외관은 기만일 수 있다. 오늘날까지 그 누구도 내비어-스톡스 방정식의 해의 공식을 찾을 단서조차 발견하지 못했다 - 그런 공식의 존재 여부조차 밝혀지지 않았다.

이 실패에 아랑곳하지 않고 해양공학자들은 효율적인 배를 설계하고, 항공공학자들은 우수한 비행기를 설계한다. 내비어-스톡스 방정식을 푸는(2차방정식 해의 공식과 유사한) 일반 공식은 없지만, 컴퓨터를 이용하여 특정 형태의 방정식들에 대한 근사적인 해를 구하는 것은 가능하기 때문이다. 양-밀스 문제와 마찬가지로 내비어-스톡스 문제 역시 수학이 다른 분야를 따라잡을 것을 요구한다. 이 문제의 경우에는 공학자들이 이미 하고 있는 일을 수학이 따라잡아야 한다.

"따라잡는다"는 표현이 그릇된 인상을 줄지도 모르겠다. 뒤쳐지기 싫어하는 수학자들의 자존심이 관건이라는 인상 말이다. 그런 인상을 가진다면, 과학적 지식이 발전해가는 방식을 오해한 것이다. 수학은 본성상 추상적이기 때문에, 현상을 수학적으로 이해한다는 것은 일반적으로 가장 깊고 확실하게 이해한다는 것이다. 또한 무엇인가를 더 깊게 이해하면, 그것을 더 잘 이용할 수 있다. 질량 간극 가설의 증명이 물리학에 획기적인 발전을 가져올 것과 마찬가지로, 내비어-스톡스 방정식 풀이는 해양 및 항공공학의 발전을 가져올 것이 분명하다.


4. Riemann Hypothesis(리만 가설)

; 이 문제는 1900년 힐베르트가 제시한 문제들 중 미해결로 남아 있는 유일한 문제이다. 어떤 특정한 방정식의 가능한 해들과 관련된 이 기묘한 형태의 문제가 수학의 미해결 문제들 중 가장 중요한 문제라는 것에 전 세계 수학자 대부분이 동의한다.

이 문제는 1859년 독일 수학자 리만에 의해서 처음 제기되었다. 리만은 다음과 같은 오랜 수학적 질문에 대한 답을 추구하고 있었다. 소수들이 무엇인가 패턴을 가지고 있을까? 기원전 350년경 유명한 그리스 수학자 유클리드는 소수가 영원히 계속된다는 것을, 즉 무한히 많이 소수가 존재한다는 것을 증명했다. 더 나아가 실제로 소수를 나열해보면, 수가 커질수록 소수가 점점 '엷어져서' 드물게만 나타나는 듯이 보인다. 하지만 소수에 관해서 이 이상의 이야기를 할 수 있을까? 사실상 할 수 있다. 리만 가설이 증명된다면, 소수와 소수의 분포에 관한 우리의 지식이 발전할 것이다. 또한 그 증명은 수학자들의 호기심을 만족시키는 것 이상의 귀결을 가져올 것이다. 그 증명은 소수들의 패턴을 휠씬 넘어선 수학적 귀결들을 가질 뿐 아니라, 물리학과 현대 통신기술에도 응용될 것이다.



*. Hodge Conjecture (호지 추측- 진짜 골때리죠ㅋ)

; 이 문제는 현재 위상학에 결여된 또 하나의 조각이다. 이 일반적인 문제는 어떻게 단순한 대상들로부터 복잡한 수학적 대상을 구성할 수 있는지와 관련된다. 이 문제는 아마도 밀레니엄 문제들 중에서 일반인이 이해하기가 가장 어려운 문제일 것이다. 기반에 있는 직관이 다른 문제들에 의해 덜 분명하거나, 다른 문제들보다 더 난해하기 때문이 아니다. 오히려 일반인이 겸험하게 될 어려움은 호지 추측이 특정한 종류의 추상적 대상들을 분류하기 위해서 수학자들이 사용하는 기법과 관련되기 때문에 발생한다. 호지 추측은 그 분류법의 심층에서 나오며 추상 수준이 높다. 그 추상 수준에 도달하는 유일한 길은 점점 높아지는 추상 수준들을 거쳐 올라가는 길이다.
호지 추측을 향한 길은 20세기 전반기에 수학자들이 복잡한 대상들의 모양을 탐구하는 강력한 방법을 발견하면서 열렸다. 그 방법의 기반에 있는 발상은 주어진 대상의 모양을 단순한 기하학적 벽돌들을 짜맞춤으로서 어느 정도까지 근사시킬 수 있는지를 묻는 것이었다. 그 방법은 매우 유용했고 여러 방식으로 일반화되었다. 수학자들은 그 방법들을 발전시켜 강력한 기법들을 만들어냈다. 결국 많은 다양한 종류의 대상들을 나열한 목록에 도달했다. 하지만 불행하게도 기법들이 일반화 되는 과정에서 기하학적 근원이 흐려졌다, 수학자들은 기하학적 해석이 전혀 없는 대상들도 목록에 포함시켜야 했다. 호지 추측은 중요한 대상들의 집합(투사 대수 다양체projective algebraic varieties라고 불린다)에 대해서는, 호지 회로라고 불리는 조각들이 기하학적 조각들(대수 회로라고 불립니다)의 조합이라고 주장한다.



6. Birch and Swinnerton-Dyer Conjecture(버츠와 스위너톤-다이어 추측)

:이 문제에서 우리는 다시 리만 가설에서와 마찬가지로 일반적이 수학 영역으로 돌아오게 된다. 고대 그리스 시대 이래 수학자들은 다음과 같은 유형의 대수 방정식의 모든 정수해를 기술하는 문제를 놓고 씨름해왔다.
x² + y² = z²
이 특정한 방정식에 대해서는 유클리드가 완벽한 해답을 제시했다 - 즉 모든 해들을 산출하는 공식을 제시했다. 1944년 와일스는 2보다 큰 임의의 지수n에 대해서 방정식
x^n + y^n = z^n
이 0이 아닌 정수해를 가지지 않음을 증명했다.(이 결론이 페르마의 마지막 정리이다). 그러나 더 복잡한 방적식들에 대해서는 정수해가 있는지, 혹은 어떤 정수해가 있는지를 밝혀내기가 매우 어렵다. 버치와 스위너톤-다이어 추측은 그 난해한 방정식들 중 한 유형에 대해서 가능한 해들에 관한 정보를 제시한다.

이 문제는 리만 가설과 관련이 있으며, 이 문제가 해결된다면 소수에 대한 우리의 전반적인 이해에 도움이 될 것이다. 이 문제의 해결이 리만 가설 증명처럼 수학 이외의 영역에도 영향을 미칠지 여부는 불분명하다. 버치와 스위너톤-다이어 추측 증명은 수학자에게만 국한된 관심사로 판명될지도 모른다.

그러나 이 문제를 비롯한 많은 수학 문제가 "실용성이 없다"고 판정하는 것은 어리석은 일이다. 물론 "순수 수학"의 추상적 문제들을 연구하는 수학자들은 대개 어떤 실용적인 귀결에서 동기를 얻기보다는 지적 호기심에서 동기를 얻는다. 그러나 순수 수학에서의 발견이 중요한 실용적 귀결을 갖는다는 사실은 역사 속에서 누차 입증되었다.

뿐만 아니라 한 문제를 풀기 위해서 수학자들이 개발한 기법들이 전혀 다른 문제들에 응용될 수 있다는 사실이 종종 입증되었다. 와일스가 페르마의 마지막 정리를 증명한 것이 전형적인 그런 사례이다. 이와 유사하게 버치와 스위너톤-다이어 추측의 증명 역시 다른 용도가 발견될 새로운 발상들을 포함할 것이 거의 확실하다.


7. Yang-Mills and Mass Gap(양-밀스 이론과 질량 간극 가설)

; 수학의 새로운 발전을 위한 계기는 상당 부분 과학 특히 물리학으로부터 주어진다. 예를 들면 수학자 뉴턴과 라이프니츠가 17세기에 미적분학을 발명한 동기는 물리학을 위해서였다. 미적분학은 연속 운동을 수학적으로 엄밀하게 기술하는 방법을 제공함으로써 과학에 혁명을 일으켰다. 뉴턴과 라이프니츠의 방법은 유효했다. 그러나 미적분학의 기반을 이루는 수학이 제대로 완성되기까지는 약 250년이 더 필요했다. 지난 반세기 정도에 걸쳐서 개발된 물리학 이론과 관련해서 유사한 상황이 벌어지고 있다. 이 일곱 번째 밀레니엄 문제는 수학자들에게 물리학을 따라잡을 것을 요구한다.

양-밀스 바정식들은 양자물리학에서 나왔다. 그 방정식들은 지금으로부터 거의 50년 전에 물리학자 양전닝과 로버트 밀스가 중력을 제외한 자연의 힘들을 기술하기 위해서 정식화했다. 그 방정식들은 훌륭한 성과를 거두었다. 방정식으로부터 도출된 예측들은 전 세계 실험실에서 관찰된 입자들을 설명한다. 그러나 실용적으로 효율적임에도 불구하고 양-밀스 이론은 아직 수학적으로 완성되지 않았다. 일곱 번째 밀레니엄 문제가 요구하는 것 중 하나는 , 그 이론을 공리로부터 출발해서 수하적으로 전개하라는 것이다. 요구되는 수학적 이론은 실험실에서 관찰된 여러 조건에 부합해야 할 것이다. 특히 그 이론은 양-밀스 방적식들의 해라고 상정된 것들과 관련된 "질량 간극 가설"을 (수학적으로)입증해야 한다. 대부분의 물리학자들은 이 가설을 받아들여 전자가 질량을 가지는 이유를 설명한다. 질량 간극 가설을 증명할 수 있는지 여부는 양-밀스 이론을 올바르게 수학적으로 전개했는지 여부를 판가름할 수 있는 좋은 시험기준이라고 여겨진다. 그들 역시 전자가 왜 질량을 가지는지 엄밀하게 설명하지 못하고 있다. 다만 그렇다는 것을 관찰했을 뿐이다.

posted by 구름너머 2005. 12. 21. 17:39

엑셀에서

2005.12.12 ==> 2005-12-12로 바꾸기

=DATE(MID(C18,1,4),MID(C18,FIND(".",C18,1)+1,FIND(".",C18,FIND(".",C18,5)+1)-FIND(".",C18,1)-1),MID(C18,FIND(".",C18,FIND(".",C18,5)+1)+1,2))